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LETTER TO THE EDITOR 

On the relationship between the critical exponents of 
percolation conductivity and static exponents of percolation 
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Department of Chemical Engineering and Mat-rials Science, University of Minnesota, 
Minneapolis, Minnesota 55455, USA 

Received 24 April 1984, in final form 24 May 1984 

Abstract. We argue that the critical exponent r of random conductance networks near the 
percolation threshold is given by r = (d - l ) v  for low dimensionalities and r = 1 +p'  for 
high dimensionalities, where Y is the correlation length exponent, p' the backbone exponent 
and d is dimensionality. We argue that what separates the two regimes is a critical fractal 
dimensionality D, which equals 2. We also argue that D, is also a critical fractal dimensional- 
ity for fractals such as lattice animals and diffusion-limited aggregates. The result for low 
dimensionalities has been also obtained by Aharony and Stauffer by a different argument. 

Random conductance networks have become an important model for the investigation 
of transport processes and other phenomena in disordered systems. Much of the 
current interest in the properties of such networks is focused on the vicinity of the 
percolation threshold pc .  As the fraction p of conducting bonds of a network in which 
the rest of the bonds are insulators approaches p c  from above, the DC conductivity 
vanishes as 

z - (P -Pc)' 
whereas the conductivity of a network in which a fraction p of bonds are superconduc- 
tors and the rest ordinary conductors diverges as pc  is approached from below, 

2 - ( P c  --PI-. (2) 
The exponents t and s are believed to be universal and independent of each other. 

Moreover, in two dimensions a duality argument (Dykhne 1970, Straley 1977) estab- 
lishes that s = r. t is a dynamical exponent whereas s is a static one. 

In the past several years many authors have attempted to obtain accurate estimates 
for exponents t and s. A list of these authors is too long to be given here, but in figure 
1 we present the frequency distributions of the reported values of t in two and three 
dimensions. The distribution of values of ? at d = 2 represents 27 data points, while 
that of t at d = 3 consists of 20 data points. An outstanding problem is whether there 
exist simple relations between t and s and the static exponents of percolation. Since 
conduction takes place only on the backbone of the infinite cluster, the problem is 
very difficult to solve unless one makes specific assumptions about the structure of the 
backbone. From their hypothesis about the density of states on the largest percolation 
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Figure 1. The frequency distribution of the reported values of percolation conductivity 
exponent t,. Arrows indicate the currently accepted values. ( a )  Two-dimensional values, 
( b )  three-dimensional values. 

cluster at pc and based on numerical evidence, Alexander and Orbach (1982) conjec- 
tured that 

t=;[(3d-4)v-PI7 (3) 

where v is the critical exponent of percolation correlation length, p the critical exponent 
of P&), the strength of the infinite network, and d is dimensionality. 

In this letter we discuss the applicability of the Alexander-Orbach (AO) conjecture 
and propose alternative relations. To begin with, we note that an E expansion (E = 6 - d)  
has been developed for the exponent t by Harris et a1 (1984). Their result is a corrected 
version of the earlier works of Stephen (1978) and Dasgupta et a1 (1978). These 
authors used the scaling relation t = (d - 2) v + c to obtain the E expansion for t. This 
is similar to the predicted t if one accepts the so-called ‘nodes and links’ model of the 
backbone first proposed by Skal and Shklovskii (1974) and de Gennes (1976). In this 
model the backbone is assumed to be made of nodes which are connected by long 
chains of many bonds called links. The length of a link is of the order of the percolation 
correlation length &, and [ represents the critical exponent which describes the 
divergence of the resistance of the links. The work of Harris et a1 (1984) indicates 
that to linear order in E one has 6 = 1 + ~ / 4 2 ,  in contrast with the earlier claim of 
Wallace and Young (1978) and Stephen (1978) that 5 = 1 at all dimensions. Thus with 
v = i + 5 ~ / 8 4  one obtains t = 3 - 10~/42, whereas the AO conjecture yields t = 3 - 11 ~ / 4 2  
if one uses p = 1 - ~ / 7 .  Based on this discrepancy Hams et a1 (1984) have argued 
that the AO conjecture is not exact. We believe that the question of E expansion for 
the conduction exponents remains open until one develops a technique by which E 

expansions for t and s can be determined without resorting to any specijic scaling law. 
It is only then that the E expansions can be used to test the validity of a conjecture. 

Very recent and accurate estimation of t and s by Zabolitzky (1984), Lobb and 
Frank (1984), Hong et a1 (1984) and Herrmann et a1 (1984) indicate that the AO 

conjecture may fail at d = 2. These authors have obtained t(d = 2) = s( d = 2) 2 1.30, 
in contrast with the AO conjecture, t = % -  1.26388. Coniglio and Stanley (1984) 
presented an argument according to which s = v ( d / D  +D- d), for D s  2 where 
D = d - p /  v is the fractal dimension of the largest percolation cluster at pc. This yields 
s(d = 2) = t (  d = 2) = #$ = 1.26770, in disagreement with the estimate of t (  d = 2). 
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We now present alternative relations which relate t to the static exponents of 
percolation. From the similarity between Kirchoff’s equations and the equations 
describing spin waves at low temperatures, one can establish an exact correspondence 
between classical Heisenberg ferromagnets and random resistor networks (Kirkpatrick 
1973, Stinchcombe 1979). Halperin and Hohenberg (1969) have derived, within a 
hydrodynamic theory, an expression for the Fourier transform of the Green function 
of the transverse excitations of a Heisenberg ferromagnet at low temperatures. This 
Green function is equivalent to the Green function G, for the DC conduction problem. 
For the DC conduction problem G, represents a response function because it represents 
the response (the voltage) at site j if a unit current is injected at site i. Therefore, if 
one employs the correspondence between Heisenberg ferromagnets and random resistor 
nztworks, the Halperin-Hohenberg expression can be translated into an equation for 
G,J(k) ,  the Fourier transform of GI,. This equation in the limits k+O and QP<< 1 is 
given by 

&k) = P~(p)/[~(p)lk21F(Sp(p)k)l .  (4) 
Here F is a scaling function which remains regular in the limit k+0. The governing 
equation for GI, is (Blackman 1976, Sahimi et a1 1983) (see also Lubensky 1977) 

where 2 is the coordination number of the network and the sum is over all nearest 
neighbours of j .  U,,, has the unit of conductivity and its significance is discussed below. 
If we take the Fourier transform of ( 5 )  and expand the trigonometric functions that 
arise in Fourier transforming, we find, in the limit k + 0, that 

&i,(k)- l/Ik21am, ( 6 )  
where we have restricted our attention to a simple cubic lattice in d dimensions. 
Substitution of (6) into (4) yields 

Z ( P )  -umPk(p)* (7) 
In the Green function formulation of conduction (Blackman 1976) and diffusion 
(Sahimi et a1 1983) U,,, is taken as an approximation to the true conductivity (diffusivity) 
of the network which can be calculated by an effective medium approximation (EMA),  

in which case U,,, - ( p  - p c ) .  This means that 

t = 1 +2p. (8) 
Essam et a1 (1974) presented a modified EMA for the Bethe lattice which was 

capable of producing the exact result t,=2 for the microscopic conductivity of the 
lattice. Hughes and Sahimi (1983, unpublished) noted that this modified EMA can be 
refined one more step so that,it can produce the exact result t = 3 for the macroscopic 
conductivity of the Bethe lattice. In this case an equation similar to (7) is produced. 
Hughes and Sahimi (see Sahimi 1983) hypothesised that an equation similar to (7) 
may hold at all dimensions, thus conjecturing (8). More recently, Kholodenko and 
Freed (1984) produced (8) by estimating in two different ways the diffusion coefficient 
for random walks on percolating networks as p + p c  from above. Equation (8) predicts 
that t (  d = 2) = E  = 1.2777. This currently represents the most accurate theoretical 
prediction of t (and s) at d = 2 as compared with the most recent estimates mentioned 
above. This is not really surprising as the EMA is very accurate at low dimensions. 
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Note that (8) yields t = 3 - 12&/42. However, (8) appears to underestimate t at higher 
dimensions as is evident from table 1 where we compare the predictions of (8) with 
the available data and with the AO conjecture, although the predictions of (8) would 
be consistent with the data if the statistical uncertainty of the data is taken into account. 

Table 1. Comparison of the available data for t with the predictions of the AO conjecture 
and those of equations (8) and (13). 

d P  P'  Y f (data) t (AO)  t (equation (8)) f (equation (13)) 

2 5/36 0.4' 4f3 1.297b 91/72? 1.2638 92f72= 1.278 - 
3 0.42' 1.03d 0.88' 2.02' 1.99 1.84 2.03 
4 0.628 1.39d 0.66g 2.39' 2.33 2.24 2.39 
5 0.84g 1.74d 0.578 2.73' 2.71 2.68 2.74 

I 3 6  1 2h I 3 3 3 3 
- 

a Li and Strieder (1982); 

et Q /  (1984), Herrmann e? a/ (1984); 

' Adler (1984) based on reanalysis of the data of 
Fisch and Harris (1978) (Pandey and Stauffer (1983) 
give t =: 2.0); 

Zabolitzky (l984), Lobb and Frank (1984), Hong 

Margolina e? Q /  (1982); 
Hong and Stanley (1983); 
Heermann and Stauffer (1981), Gaunt and Sykes 

Fisch and Harris (1978): 
Larson and Davis (1982). 

(1983); 

According to ( 6 ) ,  l/a, represents the resistance between two widely separated sites 
i and j .  Thus if crm - ( p  - p C ) < ~ ,  one obtains 

where the exponent lR is expected to be universal and lR# 5. On a Bethe lattice the 
resistance between two sites separated by a distance tp is proportional to 6;; thus 
CR= 1 .  This is also true for six- and higher-dimensional systems for which the nodes 
and links model is exact. This simple model breaks down below six dimensions and 
lR is a dimensional dependent quantity. A glance at table 1 reveals that the dimensional 
dependence of lR is not monotonic. 

It remains only to relate lR to other percolation exponents. We believe that there 
are two separate regimes in each of which lR is related to other percolation exponents 
by a different relation. At low dimensions two widely separated nodes are connected 
by complicated parallel paths. At higher dimensions the effect of parallel paths 
decreases and the nodes and links picture becomes increasingly more accurate. Thus 
there should be a lower critical dimensionality dl which separates the two regimes. 
We note here that Fucito and Parisi (1981) have shown that the E expansions for the 
critical exponents calculated from a (p3 theory break down at some anomalous 
dimension. At this anomalous dimension the fourth-order potential becomes relevant. 
They estimated that this anomalous dimension lies between two and three. A similar 
phenomenon was observed by Harris (1983) and Harris and Lubensky (1983) in their 
field-theoretic formulation of the backbone problem. Coniglio and Stanley (1984) have 
also argued that there are two distinct scaling relations that relate the exponent s to 
other percolation exponents. They argued that there is a lower critical fractal 
dimensionality DI which separates the two regimes and that DI = 2. A similar argument 
was made by Aharony and Stauffer (1984) who argued that the AO conjecture may 
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break down below Dl = 2 and presented an alternative relation relating t to other 
percolation exponents for D zs Dl. This lower critical fractal dimensionality corres- 
ponds to a value of dl = 2.2, in agreement with the calculations of Fucito and Parisi 
(1981). We conjecture that the relevance of the fourth-order potential may also be 
responsible for the breakdown of a scaling law which may relate t or s to other 
percolation exponents. 

It remains to relate lR to other percolation exponents for d zs dl and d 3 dl. It has 
been recently argued that (Sahimi 1984) 

s = v, d d di, (10) 

which is different from the relation proposed by Coniglio and Stanley (1984) mentioned 
above. This equation satisfies the exact result s(d  = 1)  = 1 and it also satisfies the 1 
expansion, where E ,  = d - 1 ; it yields s/ v = 1, in agreement with Kirkpatrick (1977). 
Since s( d = 2) = t (  d = 2), one obtaind lR(d = 2) = v( d = 2) - 2P( d = 2) = y( d = 2) - 
v ( d  = 2), where y is the susceptibility exponent. If we assume that this last relation 
holds for all d such that d d dl, i.e. lR = y - v for d s d,, we obtain 

t = (d - 1) v, d d dp (11) 

This is the same as the result of Aharony and Stauffer (1984). They obtained ( 1  1)  by 
a completely different argument. Equation (1 1) predicts that t(d = 1)  =0, an exact 
(and trivial) result, and t(d = 2) = v. The accuracy of the result t (  d = 2) = v is presently 
slightly less than t(d = 2) = 1 +2P(d  = 2), as compared with the available data. 
However, ( 1  1) also satisfies the 1 + e l  expansion as pointed out by Aharony and Stauffer 
(1984). Aharony and Stauffer (1984) also argued that one probably needs to simulate 
very large systems to observe the result r(d = 2) = U. Equation ( 1  1 )  had earlier been 
conjectured by Levinshtein et a1 (1975) to hold at all dimensions. However, (1 1) is 
definitely wrong for d 2 6 ,  because it yields t = $ ,  whereas t ( d 3 6 )  =3. The result 
t (  d = 2) = s( d = 2) = U had been conjectured by Straley (1980). 

Several points deserve notice. Equations (10) and ( 1  1 )  together satisfy Straley’s 
(1980) hyperscaling law, t +s = vd. Straley (1980) had conjectured that this law holds 
at all d. Our results indicate that it should hold at least for d d d,. We also note that 
the result lR = y - v satisfies the inequalities 0 d lR d U, for 1 d d S d, (Skal and Shklov- 
skii 1974). This result also shows that the resistive susceptibility exponent yr defined 
by Fisch and Hams (1978) is given by yr = y + v, for d d dl. In two dimensions this 
yields yr=$=3.72, in good agreement with the recent result of Adler (1984) who 
reanalysed the series expansion data of Fisch and Hams (1978) to take into account 
the effect of non-analytic confluent corrections and obtained yr= 3.73. We finally note 
that if one takes ( 1  1) seriously, one obtains d, = 2 D / (  1 + D ) ,  where d, is the spectral 
dimension of the largest percolation cluster at pc.  If one considers a fractal of linear 
dimension L, the conductance g of the fractal scales as g - L’L, where PL was argued 
by Rammal and Toulouse (1983) to be PL = D( I - 2 / d , ) .  This means that for the largest 
percolation cluster at p c  and for d s dl, or equivalently Os Dl, one has 

P L =  -1, d d dl, (12) 

i.e. PL is independent of dimension for 1 4  d d dl. These results have several other 
implications for lattice animals and diff usion-limited aggregates and also for the work 
of Coniglio and Stanley (1984). We conjecture that Dl = 2 is also a lower critical fractal 
dimensionality for all fractals which have homogeneous interior structure, such as 
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lattice animals. Thus a hypothesis such as the AO conjecture may hold for such fractals 
with D >  D,, but not for DG Dl. These matters will be discussed elsewhere. 

For d 3 dl, we have not been able to relate lR to other percolation exponents. It 
is easily possible to relate lR to the various susceptibility exponents defined by Fisch 
and Harris (1978). However, our aim is a scaling law which relates directly lR to other 
well studied percolation exponents such as U, p and y. We have noticed that the scaling 
law 

t = 1 + p ’ ,  d 3 dl, (13) 

where p‘ is the critical exponent of the backbone yields excellent predictions of t for 
systems above dl. This is evident from table 1 where we also list the predictions of 
(13). This equation appears to fail at d =2,  if the current value P’ (d  =2)-0.4 is 
accepted as an accurate estimate. Hams and Lubensky (1983) and Harris (1983) have 
shown that 

p ’ =  2p +U*, (14) 
where (I, is a new and independent crossover exponent which describes the correlation 
function of the backbone. Substitution of (14) into (13) yields 

t = 1 +2p +v*, (15) 

which means that lR = 1 + ut). The work of Fortuin and Kasteleyn (1972) shows that 
the resistance between two widely separated sites in a random resistor network plays 
a role similar to the thermal correlation function in the equivalent q-state Potts model 
in the limit q + O .  From this point of view it is very satisfying that lR and t+b seem to 
be related. It is also satisfying that lR seems to be related to an exponent describing 
a backbone property, since conduction takes place only on the backbone. The results 
of Harris (1983) and Harris and Lubensky (1983) also indicate that (I, has non- 
monotonic dependence on d which is consistent with our result. One may also interpret 
the v(I, term as the correction to the EMA approximation which yielded (8). If we 
assume that (13) holds for all d > 1, then in view of (10) and ( 1  1)  one must have 
p’ (d  = 2) = v ( d  = 2) - 1 = 4. This is close to the current value of p’ mentioned above, 
but appears to be somewhat low. 

Harris (1983) and Harris and Lubensky (1983), who formulated the field-theoretic 
approach to the backbone problem, obtained the result 4 = 2c2/49. They also pointed 
out that this field-theoretic formulation of the backbone problem should break down 
at some low dimension d* ,  where the fixed point of (p3 theory becomes unstable with 
respect to a ‘p4 interaction and thus a (p4 perturbation is relevant. This presumably 
means that (14) breaks down below d* .  We believe that d* = dl = 2.2. If one believes 
that t and s vary continuously with d, then (3), (11)  and (13) should yield the same 
t at d, = 2.2. We have checked this and it turns out that the AO conjecture yields 
t ( d  = 4 )  = 1.51, equation ( 1  1) yields t ( d  = d , )  = 1.48 and (13) yields t ( d  = d l )  = 1.52. 
Thus, taking into account the statistical uncertainty of the available data, these equations 
seem to be consistent with each other. On the other hand (8) yields t ( d  = d , )  2 1.39. 
Future works, both theoretical and numerical, will further assess the validity of (3), 
(11)  and (13). 

I am grateful to the referee for constructive criticism and very useful suggestions and 
for providing me with the copies of Hams et a1 (1984) and Adler (1984). I am indebted 
to D Stauffer and H E Stanley for sending me their papers prior to publication and 
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to R B Pandey for a useful and friendly discussion. I would also like to thank B D 
Hughes and A L Kholodenko for useful comments on an earlier draft of this paper. 
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